
3

Computing with large integers

In this chapter, we review standard asymptotic notation, introduce the for-
mal computational model we shall use throughout the rest of the text, and
discuss basic algorithms for computing with large integers.

3.1 Asymptotic notation

We review some standard notation for relating the rate of growth of func-
tions. This notation will be useful in discussing the running times of algo-
rithms, and in a number of other contexts as well.

Suppose that x is a variable taking non-negative integer or real values,
and let g denote a real-valued function in x that is positive for all sufficiently
large x; also, let f denote any real-valued function in x. Then

• f = O(g) means that |f(x)| ≤ cg(x) for some positive constant c and
all sufficiently large x (read, “f is big-O of g”),

• f = Ω(g) means that f(x) ≥ cg(x) for some positive constant c and
all sufficiently large x (read, “f is big-Omega of g”),

• f = Θ(g) means that cg(x) ≤ f(x) ≤ dg(x), for some positive con-
stants c and d and all sufficiently large x (read, “f is big-Theta of
g”),

• f = o(g) means that f/g → 0 as x → ∞ (read, “f is little-o of g”),
and

• f ∼ g means that f/g → 1 as x → ∞ (read, “f is asymptotically
equal to g”).

Example 3.1. Let f(x) := x2 and g(x) := 2x2−x+ 1. Then f = O(g) and
f = Ω(g). Indeed, f = Θ(g). 2

Example 3.2. Let f(x) := x2 and g(x) := x2 − 2x+ 1. Then f ∼ g. 2

33

34 Computing with large integers

Example 3.3. Let f(x) := 1000x2 and g(x) := x3. Then f = o(g). 2

Let us call a function in x eventually positive if it takes positive values
for all sufficiently large x. Note that by definition, if we write f = Ω(g),
f = Θ(g), or f ∼ g, it must be the case that f (in addition to g) is eventually
positive; however, if we write f = O(g) or f = o(g), then f need not be
eventually positive.

When one writes “f = O(g),” one should interpret “· = O(·)” as a binary
relation between f with g. Analogously for “f = Ω(g),” “f = Θ(g),” and
“f = o(g).”

One may also write “O(g)” in an expression to denote an anonymous
function f such that f = O(g). As an example, one could write

∑n
i=1 i =

n2/2 + O(n). Analogously, Ω(g), Θ(g), and o(g) may denote anonymous
functions. The expression O(1) denotes a function bounded in absolute
value by a constant, while the expression o(1) denotes a function that tends
to zero in the limit.

As an even further use (abuse?) of the notation, one may use the big-O,
-Omega, and -Theta notation for functions on an arbitrary domain, in which
case the relevant bound should hold throughout the entire domain.

Exercise 3.1. Show that

(a) f = o(g) implies f = O(g) and g 6= O(f);

(b) f = O(g) and g = O(h) implies f = O(h);

(c) f = O(g) and g = o(h) implies f = o(h);

(d) f = o(g) and g = O(h) implies f = o(h).

Exercise 3.2. Let f and g be eventually positive functions in x. Show that

(a) f ∼ g if and only if f = (1 + o(1))g;

(b) f ∼ g implies f = Θ(g);

(c) f = Θ(g) if and only if f = O(g) and f = Ω(g);

(d) f = Ω(g) if and only if g = O(f).

Exercise 3.3. Let f and g be eventually positive functions in x, and suppose
f/g tends to a limit L (possibly L =∞) as x→∞. Show that

(a) if L = 0, then f = o(g);

(b) if 0 < L <∞, then f = Θ(g);

(c) if L =∞, then g = o(f).

Exercise 3.4. Order the following functions in x so that for each adjacent

3.1 Asymptotic notation 35

pair f, g in the ordering, we have f = O(g), and indicate if f = o(g), f ∼ g,
or g = O(f):

x3, exx2, 1/x, x2(x+ 100) + 1/x, x+
√
x, log2 x, log3 x, 2x2, x,

e−x, 2x2 − 10x+ 4, ex+
√

x, 2x, 3x, x−2, x2(log x)1000.

Exercise 3.5. Suppose that x takes non-negative integer values, and that
g(x) > 0 for all x ≥ x0 for some x0. Show that f = O(g) if and only if
|f(x)| ≤ cg(x) for some positive constant c and all x ≥ x0.

Exercise 3.6. Give an example of two non-decreasing functions f and g,
both mapping positive integers to positive integers, such that f 6= O(g) and
g 6= O(f).

Exercise 3.7. Show that

(a) the relation “∼” is an equivalence relation on the set of eventually
positive functions;

(b) for eventually positive functions f1, f2, g2, g2, if f1 ∼ f2 and g1 ∼ g2,
then f1 ? g1 ∼ f2 ? g2, where “?” denotes addition, multiplication, or
division;

(c) for eventually positive functions f1, f2, and any function g that tends
to infinity as x → ∞, if f1 ∼ f2, then f1 ◦ g ∼ f2 ◦ g, where “◦”
denotes function composition.

Exercise 3.8. Show that all of the claims in the previous exercise also hold
when the relation “∼” is replaced with the relation “· = Θ(·).”

Exercise 3.9. Let f1, f2 be eventually positive functions. Show that if
f1 ∼ f2, then log(f1) = log(f2) + o(1), and in particular, if log(f1) = Ω(1),
then log(f1) ∼ log(f2).

Exercise 3.10. Suppose that f and g are functions defined on the integers
k, k + 1, . . ., and that g is eventually positive. For n ≥ k, define F (n) :=∑n

i=k f(i) andG(n) :=
∑n

i=k g(i). Show that if f = O(g) andG is eventually
positive, then F = O(G).

Exercise 3.11. Suppose that f and g are functions defined on the integers
k, k+1, . . ., both of which are eventually positive. For n ≥ k, define F (n) :=∑n

i=k f(i) and G(n) :=
∑n

i=k g(i). Show that if f ∼ g and G(n) → ∞ as
n→∞, then F ∼ G.

The following two exercises are continuous variants of the previous two
exercises. To avoid unnecessary distractions, we shall only consider functions

36 Computing with large integers

that are quite “well behaved.” In particular, we restrict ourselves to piece-
wise continuous functions (see §A3).

Exercise 3.12. Suppose that f and g are piece-wise continuous on [a,∞),
and that g is eventually positive. For x ≥ a, define F (x) :=

∫ x
a f(t)dt and

G(x) :=
∫ x
a g(t)dt. Show that if f = O(g) and G is eventually positive, then

F = O(G).

Exercise 3.13. Suppose that f and g are piece-wise continuous [a,∞), both
of which are eventually positive. For x ≥ a, define F (x) :=

∫ x
a f(t)dt and

G(x) :=
∫ x
a g(t)dt. Show that if f ∼ g and G(x) → ∞ as x → ∞, then

F ∼ G.

3.2 Machine models and complexity theory

When presenting an algorithm, we shall always use a high-level, and some-
what informal, notation. However, all of our high-level descriptions can be
routinely translated into the machine-language of an actual computer. So
that our theorems on the running times of algorithms have a precise mathe-
matical meaning, we formally define an “idealized” computer: the random
access machine or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2], . . .

each of which can store an arbitrary integer, together with a program. A
program consists of a finite sequence of instructions I0, I1, . . ., where each
instruction is of one of the following types:

arithmetic This type of instruction is of the form α← β ? γ, where ? rep-
resents one of the operations addition, subtraction, multiplication,
or integer division (i.e., b·/·c). The values β and γ are of the form c,
m[a], or m[m[a]], and α is of the form m[a] or m[m[a]], where c is an
integer constant and a is a non-negative integer constant. Execution
of this type of instruction causes the value β ? γ to be evaluated and
then stored in α.

branching This type of instruction is of the form IF β 3 γ GOTO i, where
i is the index of an instruction, and where 3 is one of the comparison
operations =, 6=, <,>,≤,≥, and β and γ are as above. Execution of
this type of instruction causes the “flow of control” to pass condi-
tionally to instruction Ii.

halt The HALT instruction halts the execution of the program.

3.2 Machine models and complexity theory 37

A RAM executes by executing instruction I0, and continues to execute
instructions, following branching instructions as appropriate, until a HALT
instruction is executed.

We do not specify input or output instructions, and instead assume that
the input and output are to be found in memory at some prescribed location,
in some standardized format.

To determine the running time of a program on a given input, we charge
1 unit of time to each instruction executed.

This model of computation closely resembles a typical modern-day com-
puter, except that we have abstracted away many annoying details. How-
ever, there are two details of real machines that cannot be ignored; namely,
any real machine has a finite number of memory cells, and each cell can
store numbers only in some fixed range.

The first limitation must be dealt with by either purchasing sufficient
memory or designing more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform
computations with quite large integers—much larger than will fit into any
single memory cell of an actual machine. To deal with this limitation, we
shall represent such large integers as vectors of digits to some fixed base, so
that each digit is bounded so as to fit into a memory cell. This is discussed in
more detail in the next section. Using this strategy, the only other numbers
we actually need to store in memory cells are “small” numbers represent-
ing array indices, addresses, and the like, which hopefully will fit into the
memory cells of actual machines.

Thus, whenever we speak of an algorithm, we shall mean an algorithm that
can be implemented on a RAM, such that all numbers stored in memory cells
are “small” numbers, as discussed above. Admittedly, this is a bit imprecise.
For the reader who demands more precision, we can make a restriction such
as the following: there exist positive constants c and d, such that at any
point in the computation, if k memory cells have been written to (including
inputs), then all numbers stored in memory cells are bounded by kc + d in
absolute value.

Even with these caveats and restrictions, the running time as we have de-
fined it for a RAM is still only a rough predictor of performance on an actual
machine. On a real machine, different instructions may take significantly dif-
ferent amounts of time to execute; for example, a division instruction may
take much longer than an addition instruction. Also, on a real machine, the
behavior of the cache may significantly affect the time it takes to load or
store the operands of an instruction. Finally, the precise running time of an

38 Computing with large integers

algorithm given by a high-level description will depend on the quality of the
translation of this algorithm into “machine code.” However, despite all of
these problems, it still turns out that measuring the running time on a RAM
as we propose here is nevertheless a good “first order” predictor of perfor-
mance on real machines in many cases. Also, we shall only state the running
time of an algorithm using a big-O estimate, so that implementation-specific
constant factors are anyway “swept under the rug.”

If we have an algorithm for solving a certain type of problem, we expect
that “larger” instances of the problem will require more time to solve than
“smaller” instances. Theoretical computer scientists sometimes equate the
notion of an “efficient” algorithm with that of a polynomial-time algo-
rithm (although not everyone takes theoretical computer scientists very se-
riously, especially on this point). A polynomial-time algorithm is one whose
running time on inputs of length n is bounded by nc + d for some constants
c and d (a “real” theoretical computer scientist will write this as nO(1)). To
make this notion mathematically precise, one needs to define the length of
an algorithm’s input.

To define the length of an input, one chooses a “reasonable” scheme to
encode all possible inputs as a string of symbols from some finite alphabet,
and then defines the length of an input as the number of symbols in its
encoding.

We will be dealing with algorithms whose inputs consist of arbitrary in-
tegers, or lists of such integers. We describe a possible encoding scheme
using the alphabet consisting of the six symbols ‘0’, ‘1’, ‘-’, ‘,’, ‘(’, and ‘)’.
An integer is encoded in binary, with possibly a negative sign. Thus, the
length of an integer x is approximately equal to log2 |x|. We can encode
a list of integers x1, . . . , xn as “(x̄1, . . . , x̄n)”, where x̄i is the encoding of
xi. We can also encode lists of lists, and so on, in the obvious way. All of
the mathematical objects we shall wish to compute with can be encoded in
this way. For example, to encode an n × n matrix of rational numbers, we
may encode each rational number as a pair of integers (the numerator and
denominator), each row of the matrix as a list of n encodings of rational
numbers, and the matrix as a list of n encodings of rows.

It is clear that other encoding schemes are possible, giving rise to different
definitions of input length. For example, we could encode inputs in some
base other than 2 (but not unary!) or use a different alphabet. Indeed, it
is typical to assume, for simplicity, that inputs are encoded as bit strings.
However, such an alternative encoding scheme would change the definition

3.3 Basic integer arithmetic 39

of input length by at most a constant multiplicative factor, and so would
not affect the notion of a polynomial-time algorithm.

Note that algorithms may use data structures for representing mathe-
matical objects that look quite different from whatever encoding scheme
one might choose. Indeed, our mathematical objects may never actually be
written down using our encoding scheme (either by us or our programs)—
the encoding scheme is a purely conceptual device that allows us to express
the running time of an algorithm as a function of the length of its input.

Also note that in defining the notion of polynomial time on a RAM, it
is essential that we restrict the sizes of numbers that may be stored in the
machine’s memory cells, as we have done above. Without this restriction,
a program could perform arithmetic on huge numbers, being charged just
one unit of time for each arithmetic operation—not only is this intuitively
“wrong,” it is possible to come up with programs that solve some problems
using a polynomial number of arithmetic operations on huge numbers, and
these problems cannot otherwise be solved in polynomial time (see §3.6).

3.3 Basic integer arithmetic

We will need algorithms to manipulate integers of arbitrary length. Since
such integers will exceed the word-size of actual machines, and to satisfy the
formal requirements of our random access model of computation, we shall
represent large integers as vectors of digits to some base B, along with a bit
indicating the sign. That is, for a ∈ Z, if we write

a = ±
k−1∑
i=0

aiB
i = ±(ak−1 · · · a1a0)B,

where 0 ≤ ai < B for i = 0, . . . , k− 1, then a will be represented in memory
as a data structure consisting of the vector of base-B digits a0, . . . , ak−1,
along with a “sign bit” to indicate the sign of a. When a is non-zero, the
high-order digit ak−1 in this representation should be non-zero.

For our purposes, we shall consider B to be a constant, and moreover, a
power of 2. The choice of B as a power of 2 is convenient for a number of
technical reasons.

A note to the reader: If you are not interested in the low-level details
of algorithms for integer arithmetic, or are willing to take them on faith,
you may safely skip ahead to §3.3.5, where the results of this section are
summarized.

We now discuss in detail basic arithmetic algorithms for unsigned (i.e.,

40 Computing with large integers

non-negative) integers—these algorithms work with vectors of base-B dig-
its, and except where explicitly noted, we do not assume the high-order
digits of the input vectors are non-zero, nor do these algorithms ensure that
the high-order digit of the output vector is non-zero. These algorithms can
be very easily adapted to deal with arbitrary signed integers, and to take
proper care that the high-order digit of the vector representing a non-zero
number is non-zero (the reader is asked to fill in these details in some of the
exercises below). All of these algorithms can be implemented directly in a
programming language that provides a “built-in” signed integer type that
can represent all integers of absolute value less than B2, and that provides
the basic arithmetic operations (addition, subtraction, multiplication, inte-
ger division). So, for example, using the C or Java programming language’s
int type on a typical 32-bit computer, we could take B = 215. The resulting
software would be reasonably efficient, but certainly not the best possible.

Suppose we have the base-B representations of two unsigned integers a
and b. We present algorithms to compute the base-B representation of a+b,
a − b, a · b, ba/bc, and a mod b. To simplify the presentation, for integers
x, y with y 6= 0, we write divmod(x, y) to denote (bx/yc, x mod y).

3.3.1 Addition

Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers. Assume
that k ≥ ` ≥ 1 (if k < `, then we can just swap a and b). The sum c := a+ b

is of the form c = (ckck−1 · · · c0)B. Using the standard “paper-and-pencil”
method (adapted from base-10 to base-B, of course), we can compute the
base-B representation of a+ b in time O(k), as follows:

carry ← 0
for i← 0 to `− 1 do

tmp ← ai + bi + carry , (carry , ci)← divmod(tmp, B)
for i← ` to k − 1 do

tmp ← ai + carry , (carry , ci)← divmod(tmp, B)
ck ← carry

Note that in every loop iteration, the value of carry is 0 or 1, and the
value tmp lies between 0 and 2B − 1.

3.3.2 Subtraction

Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers. Assume
that k ≥ ` ≥ 1. To compute the difference c := a− b, we may use the same

3.3 Basic integer arithmetic 41

algorithm as above, but with the expression “ai + bi” replaced by “ai − bi.”
In every loop iteration, the value of carry is 0 or −1, and the value of tmp
lies between −B and B−1. If a ≥ b, then ck = 0 (i.e., there is no carry out of
the last loop iteration); otherwise, ck = −1 (and b−a = Bk− (ck−1 · · · c0)B,
which can be computed with another execution of the subtraction routine).

3.3.3 Multiplication

Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers, with
k ≥ 1 and ` ≥ 1. The product c := a · b is of the form (ck+`−1 · · · c0)B, and
may be computed in time O(k`) as follows:

for i← 0 to k + `− 1 do ci ← 0
for i← 0 to k − 1 do

carry ← 0
for j ← 0 to `− 1 do

tmp ← aibj + ci+j + carry
(carry , ci+j)← divmod(tmp, B)

ci+` ← carry

Note that at every step in the above algorithm, the value of carry lies
between 0 and B − 1, and the value of tmp lies between 0 and B2 − 1.

3.3.4 Division with remainder

Let a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B be unsigned integers, with
k ≥ 1, ` ≥ 1, and b`−1 6= 0. We want to compute q and r such that
a = bq + r and 0 ≤ r < b. Assume that k ≥ `; otherwise, a < b, and we can
just set q ← 0 and r ← a. The quotient q will have at most m := k − `+ 1
base-B digits. Write q = (qm−1 · · · q0)B.

At a high level, the strategy we shall use to compute q and r is the
following:

r ← a

for i← m− 1 down to 0 do
qi ← br/Bibc
r ← r −Bi · qib

One easily verifies by induction that at the beginning of each loop itera-
tion, we have 0 ≤ r < Bi+1b, and hence each qi will be between 0 and B−1,
as required.

Turning the above strategy into a detailed algorithm takes a bit of work.

42 Computing with large integers

In particular, we want an easy way to compute br/Bibc. Now, we could
in theory just try all possible choices for qi —this would take time O(B`),
and viewing B as a constant, this is O(`). However, this is not really very
desirable from either a practical or theoretical point of view, and we can do
much better with just a little effort.

We shall first consider a special case; namely, the case where ` = 1. In this
case, the computation of the quotient br/Bibc is facilitated by the following,
which essentially tells us that this quotient is determined by the two high-
order digits of r:

Theorem 3.1. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n

for some integers n, s, x′, y′, with n ≥ 0 and 0 ≤ s < 2n. Then bx/yc =
bx′/y′c.

Proof. We have
x

y
=
x′

y′
+

s

y′2n
≥ x′

y′
.

It follows immediately that bx/yc ≥ bx′/y′c.
We also have

x

y
=
x′

y′
+

s

y′2n
<
x′

y′
+

1
y′
≤

(⌊
x′

y′

⌋
+
y′ − 1
y′

)
+

1
y′
.

Thus, we have x/y < bx′/y′c+ 1, and hence, bx/yc ≤ bx′/y′c. 2

From this theorem, one sees that the following algorithm correctly com-
putes the quotient and remainder in time O(k) (in the case ` = 1):

carry ← 0
for i← k − 1 down to 0 do

tmp ← carry ·B + ai

(carry , qi)← divmod(tmp, b0)
output the quotient q = (qk−1 · · · q0)B and the remainder carry

Note that in every loop iteration, the value of carry lies between 0 and
b0 ≤ B−1, and the value of tmp lies between 0 and B ·b0 +(B−1) ≤ B2−1.

That takes care of the special case where ` = 1. Now we turn to the
general case ` ≥ 1. In this case, we cannot so easily get the digits qi of
the quotient, but we can still fairly easily estimate these digits, using the
following:

3.3 Basic integer arithmetic 43

Theorem 3.2. Let x and y be integers such that

0 ≤ x = x′2n + s and 0 < y = y′2n + t

for some integers n, s, t, x′, y′ with n ≥ 0, 0 ≤ s < 2n, and 0 ≤ t < 2n.
Further suppose that 2y′ ≥ x/y. Then we have

bx/yc ≤ bx′/y′c ≤ bx/yc+ 2.

Proof. For the first inequality, note that x/y ≤ x/(y′2n), and so bx/yc ≤
bx/(y′2n)c, and by the previous theorem, bx/(y′2n)c = bx′/y′c. That proves
the first inequality.

For the second inequality, first note that from the definitions, x/y ≥
x′/(y′+1), which is equivalent to x′y−xy′−x ≤ 0. Now, the inequality 2y′ ≥
x/y is equivalent to 2yy′ − x ≥ 0, and combining this with the inequality
x′y− xy′− x ≤ 0, we obtain 2yy′− x ≥ x′y− xy′− x, which is equivalent to
x/y ≥ x′/y′−2. It follows that bx/yc ≥ bx′/y′c−2. That proves the second
inequality. 2

Based on this theorem, we first present an algorithm for division with re-
mainder that works assuming that b is appropriately “normalized,” meaning
that b`−1 ≥ 2w−1, where B = 2w. This algorithm is shown in Fig. 3.1.

Some remarks are in order:

1. In line 4, we compute qi, which by Theorem 3.2 is greater than or
equal to the true quotient digit, but exceeds this value by at most 2.

2. In line 5, we reduce qi if it is obviously too big.

3. In lines 6–10, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B − qib.

In each loop iteration, the value of tmp lies between −(B2 −B) and
B − 1, and the value carry lies between −(B − 1) and 0.

4. If the estimate qi is too large, this is manifested by a negative value
of ri+` at line 10. Lines 11–17 detect and correct this condition: the
loop body here executes at most twice; in lines 12–16, we compute

(ri+` · · · ri)B ← (ri+` · · · ri)B + (b`−1 · · · b0)B.

Just as in the algorithm in §3.3.1, in every iteration of the loop in lines
13–15, the value of carry is 0 or 1, and the value tmp lies between 0
and 2B − 1.

It is quite easy to see that the running time of the above algorithm is
O(` · (k − `+ 1)).

44 Computing with large integers

1. for i← 0 to k − 1 do ri ← ai

2. rk ← 0
3. for i← k − ` down to 0 do
4. qi ← b(ri+`B + ri+`−1)/b`−1c
5. if qi ≥ B then qi ← B − 1
6. carry ← 0
7. for j ← 0 to `− 1 do
8. tmp ← ri+j − qibj + carry
9. (carry , ri+j)← divmod(tmp, B)

10. ri+` ← ri+` + carry
11. while ri+` < 0 do
12. carry ← 0
13. for j ← 0 to `− 1 do
14. tmp ← ri+j + bi + carry
15. (carry , ri+j)← divmod(tmp, B)
16. ri+` ← ri+` + carry
17. qi ← qi − 1
18. output the quotient q = (qk−` · · · q0)B

and the remainder r = (r`−1 · · · r0)B

Fig. 3.1. Division with Remainder Algorithm

Finally, consider the general case, where b may not be normalized. We
multiply both a and b by an appropriate value 2w′

, with 0 ≤ w′ < w,
obtaining a′ := a2w′

and b′ := 2w′
, where b′ is normalized; alternatively, we

can use a more efficient, special-purpose “left shift” algorithm to achieve
the same effect. We then compute q and r′ such that a′ = b′q + r′, using
the above division algorithm for the normalized case. Observe that q =
ba′/b′c = ba/bc, and r′ = r2w′

, where r = a mod b. To recover r, we simply
divide r′ by 2w′

, which we can do either using the above “single precision”
division algorithm, or by using a special-purpose “right shift” algorithm. All
of this normalizing and denormalizing takes time O(k + `). Thus, the total
running time for division with remainder is still O(` · (k − `+ 1)).

Exercise 3.14. Work out the details of algorithms for arithmetic on signed
integers, using the above algorithms for unsigned integers as subroutines.
You should give algorithms for addition, subtraction, multiplication, and

3.3 Basic integer arithmetic 45

division with remainder of arbitrary signed integers (for division with re-
mainder, your algorithm should compute ba/bc and a mod b). Make sure
your algorithm correctly computes the sign bit of the result, and also strips
leading zero digits from the result.

Exercise 3.15. Work out the details of an algorithm that compares two
signed integers a and b, determining which of a < b, a = b, or a > b holds.

Exercise 3.16. Suppose that we run the division with remainder algorithm
in Fig. 3.1 for ` > 1 without normalizing b, but instead, we compute the
value qi in line 4 as follows:

qi ← b(ri+`B
2 + ri+`−1B + ri+`−2)/(b`−1B + b`−2)c.

Show that qi is either equal to the correct quotient digit, or the correct
quotient digit plus 1. Note that a limitation of this approach is that the
numbers involved in the computation are larger than B2.

Exercise 3.17. Work out the details for an algorithm that shifts a given
unsigned integer a to the left by a specified number of bits s (i.e., computes
b := a · 2s). The running time of your algorithm should be linear in the
number of digits of the output.

Exercise 3.18. Work out the details for an algorithm that shifts a given
unsigned integer a to the right by a specified number of bits s (i.e., computes
b := ba/2sc). The running time of your algorithm should be linear in the
number of digits of the output. Now modify your algorithm so that it
correctly computes ba/2sc for signed integers a.

Exercise 3.19. This exercise is for C/Java programmers. Evaluate the
C/Java expressions

(-17) % 4; (-17) & 3;

and compare these values with (−17) mod 4. Also evaluate the C/Java
expressions

(-17) / 4; (-17) >> 2;

and compare with b−17/4c. Explain your findings.

Exercise 3.20. This exercise is also for C/Java programmers. Suppose
that values of type int are stored using a 32-bit 2’s complement representa-
tion, and that all basic arithmetic operations are computed correctly modulo
232, even if an “overflow” happens to occur. Also assume that double pre-
cision floating point has 53 bits of precision, and that all basic arithmetic

46 Computing with large integers

operations give a result with a relative error of at most 2−53. Also assume
that conversion from type int to double is exact, and that conversion from
double to int truncates the fractional part. Now, suppose we are given int
variables a, b, and n, such that 1 < n < 230, 0 ≤ a < n, and 0 ≤ b < n.
Show that after the following code sequence is executed, the value of r is
equal to (a · b) mod n:

int q;
q = (int) ((((double) a) * ((double) b)) / ((double) n));
r = a*b - q*n;
if (r >= n)

r = r - n;
else if (r < 0)

r = r + n;

3.3.5 Summary

We now summarize the results of this section. For an integer a, we define
len(a) to be the number of bits in the binary representation of |a|; more
precisely,

len(a) :=
{
blog2 |a|c+ 1 if a 6= 0,
1 if a = 0.

Notice that for a > 0, if ` := len(a), then we have log2 a < ` ≤ log2 a+ 1, or
equivalently, 2`−1 ≤ a < 2`.

Assuming that arbitrarily large integers are represented as described at
the beginning of this section, with a sign bit and a vector of base-B digits,
where B is a constant power of 2, we may state the following theorem.

Theorem 3.3. Let a and b be arbitrary integers.

(i) We can compute a± b in time O(len(a) + len(b)).

(ii) We can compute a · b in time O(len(a) len(b)).

(iii) If b 6= 0, we can compute the quotient q := ba/bc and the remainder
r := a mod b in time O(len(b) len(q)).

Note the bound O(len(b) len(q)) in part (iii) of this theorem, which may be
significantly less than the bound O(len(a) len(b)). A good way to remember
this bound is as follows: the time to compute the quotient and remainder is
roughly the same as the time to compute the product bq appearing in the
equality a = bq + r.

This theorem does not explicitly refer to the base B in the underlying

3.3 Basic integer arithmetic 47

implementation. The choice of B affects the values of the implied big-O
constants; while in theory, this is of no significance, it does have a significant
impact in practice.

From now on, we shall (for the most part) not worry about the imple-
mentation details of long-integer arithmetic, and will just refer directly this
theorem. However, we will occasionally exploit some trivial aspects of our
data structure for representing large integers. For example, it is clear that
in constant time, we can determine the sign of a given integer a, the bit
length of a, and any particular bit of the binary representation of a; more-
over, as discussed in Exercises 3.17 and 3.18, multiplications and divisions
by powers of 2 can be computed in linear time via “left shifts” and “right
shifts.” It is also clear that we can convert between the base-2 representa-
tion of a given integer and our implementation’s internal representation in
linear time (other conversions may take longer—see Exercise 3.25).

A note on notation: “len” and “log.” In expressing the run-
ning times of algorithms, we generally prefer to write, for exam-
ple, O(len(a) len(b)), rather than O((log a)(log b)). There are two
reasons for this. The first is esthetic: the function “len” stresses
the fact that running times should be expressed in terms of the bit
length of the inputs. The second is technical: big-O estimates in-
volving expressions containing several independent parameters, like
O(len(a) len(b)), should be valid for all possible values of the param-
eters, since the notion of “sufficiently large” does not make sense in
this setting; because of this, it is very inconvenient to have functions,
like log, that vanish or are undefined on some inputs.

Exercise 3.21. Let n1, . . . , nk be positive integers. Show that

k∑
i=1

len(ni)− k ≤ len
(k∏

i=1

ni

)
≤

k∑
i=1

len(ni).

Exercise 3.22. Show that the product n of integers n1, . . . , nk, with each
ni > 1, can be computed in time O(len(n)2). Do not assume that k is a
constant.

Exercise 3.23. Show that given integers n1, . . . , nk, with each ni > 1, and
an integer z, where 0 ≤ z < n and n :=

∏
i ni, we can compute the k integers

z mod ni, for i = 1, . . . , k, in time O(len(n)2).

Exercise 3.24. Consider the problem of computing bn1/2c for a given non-
negative integer n.

(a) Using binary search, give an algorithm for this problem that runs in

48 Computing with large integers

time O(len(n)3). Your algorithm should discover the bits of bn1/2c
one at a time, from high- to low-order bit.

(b) Refine your algorithm from part (a), so that it runs in time
O(len(n)2).

Exercise 3.25. Show how to convert (in both directions) between the base-
10 representation and our implementation’s internal representation of an
integer n in time O(len(n)2).

3.4 Computing in Zn

Let n > 1. For α ∈ Zn, there exists a unique integer a ∈ {0, . . . , n− 1} such
that α = [a]n; we call this integer a the canonical representative of α,
and denote it by rep(α). For computational purposes, we represent elements
of Zn by their canonical representatives.

Addition and subtraction in Zn can be performed in time O(len(n)):
given α, β ∈ Zn, to compute rep(α + β), we simply compute the integer
sum rep(α) + rep(β), subtracting n if the result is greater than or equal
to n; similarly, to compute rep(α − β), we compute the integer difference
rep(α)− rep(β), adding n if the result is negative. Multiplication in Zn can
be performed in time O(len(n)2): given α, β ∈ Zn, we compute rep(α · β) as
rep(α) rep(β) mod n, using one integer multiplication and one division with
remainder.

A note on notation: “rep,” “mod,” and “[·]n.” In describ-
ing algorithms, as well as in other contexts, if α, β are elements of
Zn, we may write, for example, γ ← α + β or γ ← αβ, and it is
understood that elements of Zn are represented by their canonical
representatives as discussed above, and arithmetic on canonical rep-
resentatives is done modulo n. Thus, we have in mind a “strongly
typed” language for our pseudo-code that makes a clear distinction
between integers in the set {0, . . . , n − 1} and elements of Zn. If
a ∈ Z, we can convert a to an object α ∈ Zn by writing α ← [a]n,
and if a ∈ {0, . . . , n− 1}, this type conversion is purely conceptual,
involving no actual computation. Conversely, if α ∈ Zn, we can con-
vert α to an object a ∈ {0, . . . , n−1}, by writing a← rep(α); again,
this type conversion is purely conceptual, and involves no actual
computation. It is perhaps also worthwhile to stress the distinction
between a mod n and [a]n — the former denotes an element of the
set {0, . . . , n− 1}, while the latter denotes an element of Zn.

Another interesting problem is exponentiation in Zn: given α ∈ Zn and
a non-negative integer e, compute αe ∈ Zn. Perhaps the most obvious
way to do this is to iteratively multiply by α a total of e times, requiring

3.4 Computing in Zn 49

time O(e len(n)2). A much faster algorithm, the repeated-squaring algo-
rithm, computes αe using just O(len(e)) multiplications in Zn, thus taking
time O(len(e) len(n)2).

This method works as follows. Let e = (b`−1 · · · b0)2 be the binary expan-
sion of e (where b0 is the low-order bit). For i = 0, . . . , `, define ei := be/2ic;
the binary expansion of ei is ei = (b`−1 · · · bi)2. Also define βi := αei for
i = 0, . . . , `, so β` = 1 and β0 = αe. Then we have

ei = 2ei+1 + bi and βi = β2
i+1 · αbi for i = 0, . . . , `− 1.

This idea yields the following algorithm:

β ← [1]n
for i← `− 1 down to 0 do

β ← β2

if bi = 1 then β ← β · α
output β

It is clear that when this algorithm terminates, we have β = αe, and that
the running-time estimate is as claimed above. Indeed, the algorithm uses
` squarings in Zn, and at most ` additional multiplications in Zn.

The following exercises develop some important efficiency improvements
to the basic repeated-squaring algorithm.

Exercise 3.26. The goal of this exercise is to develop a “2t-ary” variant of
the above repeated-squaring algorithm, in which the exponent is effectively
treated as a number in base 2t, rather than in base 2.

(a) Show how to modify the repeated squaring so as to compute αe using
`+O(1) squarings in Zn, and an additional 2t +`/t+O(1) multiplica-
tions in Zn. As above, α ∈ Zn and len(e) = `, while t is a parameter
that we are free to choose. Your algorithm should begin by building
a table of powers [1], α, . . . , α2t−1, and after that, it should process
the bits of e from left to right in blocks of length t (i.e., as base-2t

digits).

(b) Show that by appropriately choosing the parameter t, we can bound
the number of additional multiplications in Zn by O(`/ len(`)). Thus,
from an asymptotic point of view, the cost of exponentiation is es-
sentially the cost of ` squarings in Zn.

(c) Improve your algorithm from part (a), so that it only uses ` + O(1)
squarings in Zn, and an additional 2t−1 + `/t+O(1) multiplications

50 Computing with large integers

in Zn. Hint: build a table that contains only the odd powers of α
among [1], α, . . . , α2t−1.

Exercise 3.27. Suppose we are given α1, . . . , αk ∈ Zn, along with non-
negative integers e1, . . . , ek, where len(ei) ≤ ` for i = 1, . . . , k. Show how to
compute

β := αe1
1 · · ·α

ek
k

using `+O(1) squarings in Zn and an additional `+ 2k +O(1) multiplica-
tions in Zn. Your algorithm should work in two phases: in the first phase,
the algorithm uses just the values α1, . . . , αk to build a table of all possible
products of subsets of α1, . . . , αk; in the second phase, the algorithm com-
putes β, using the exponents e1, . . . , ek, and the table computed in the first
phase.

Exercise 3.28. Suppose that we are to compute αe, where α ∈ Zn, for
many `-bit exponents e, but with α fixed. Show that for any positive integer
parameter k, we can make a pre-computation (depending on α, `, and k)
that uses ` + O(1) squarings in Zn and 2k + O(1) multiplications in Zn, so
that after the pre-computation, we can compute αe for any `-bit exponent e
using just `/k+O(1) squarings and `/k+O(1) multiplications in Zn. Hint:
use the algorithm in the previous exercise.

Exercise 3.29. Let k be a constant, positive integer. Suppose we are given
α1, . . . , αk ∈ Zn, along with non-negative integers e1, . . . , ek, where len(ei) ≤
` for i = 1, . . . , k. Show how to compute

β := αe1
1 · · ·α

ek
k

using `+O(1) squarings in Zn and an additional O(`/ len(`)) multiplications
in Zn. Hint: develop a 2t-ary version of the algorithm in Exercise 3.27.

Exercise 3.30. Let m1, . . . ,mr be integers, each greater than 1, and let
m := m1 · · ·mr. Also, for i = 1, . . . , r, define m′i := m/mi. Given α ∈ Zn,
show how to compute all of the quantities

αm′
1 , . . . , αm′

r

using a total of O(len(r) len(m)) multiplications in Zn. Hint: divide and
conquer.

Exercise 3.31. The repeated-squaring algorithm we have presented here
processes the bits of the exponent from left to right (i.e., from high order
to low order). Develop an algorithm for exponentiation in Zn with similar
complexity that processes the bits of the exponent from right to left.

3.5 Faster integer arithmetic (∗) 51

3.5 Faster integer arithmetic (∗)
The quadratic-time algorithms presented in §3.3 for integer multiplication
and division are by no means the fastest possible. The next exercise develops
a faster multiplication algorithm.

Exercise 3.32. Suppose we have two positive, `-bit integers a and b such
that a = a12k + a0 and b = b12k + b0, where 0 ≤ a0 < 2k and 0 ≤ b0 < 2k.
Then

ab = a1b122k + (a0b1 + a1b0)2k + a0b0.

Show how to compute the product ab in time O(`), given the products a0b0,
a1b1, and (a0 − a1)(b0 − b1). From this, design a recursive algorithm that
computes ab in time O(`log2 3). (Note that log2 3 ≈ 1.58.)

The algorithm in the previous is also not the best possible. In fact, it is
possible to multiply `-bit integers on a RAM in time O(`), but we do not
explore this any further here (see §3.6).

The following exercises explore the relationship between integer multipli-
cation and related problems. We assume that we have an algorithm that
multiplies two integers of at most ` bits in time M(`). It is convenient (and
reasonable) to assume that M is a well-behaved complexity function.
By this, we mean that M maps positive integers to positive real numbers,
and

• for all positive integers a and b, we have M(a + b) ≥ M(a) + M(b),
and

• for all real c > 1 there exists real d > 1, such that for all positive
integers a and b, if a ≤ cb, then M(a) ≤ dM(b).

Exercise 3.33. Let α > 0, β ≥ 1, γ ≥ 0, δ ≥ 0 be real constants. Show
that

M(`) := α`β len(`)γ len(len(`))δ

is a well-behaved complexity function.

Exercise 3.34. Give an algorithm for Exercise 3.22 that runs in time

O(M(len(n)) len(k)).

Hint: divide and conquer.

Exercise 3.35. We can represent a “floating point” number ẑ as a pair
(a, e), where a and e are integers — the value of ẑ is the rational number

52 Computing with large integers

a2e, and we call len(a) the precision of ẑ. We say that ẑ is a k-bit ap-
proximation of a real number z if ẑ has precision k and ẑ = (1 + ε)z for
some |ε| ≤ 2−k+1. Show how to compute — given positive integers b and
k— a k-bit approximation of 1/b in time O(M(k)). Hint: using Newton
iteration, show how to go from a t-bit approximation of 1/b to a (2t − 2)-
bit approximation of 1/b, making use of just the high-order O(t) bits of b,
in time O(M(t)). Newton iteration is a general method of iteratively
approximating a root of an equation f(x) = 0 by starting with an initial ap-
proximation x0, and computing subsequent approximations by the formula
xi+1 = xi − f(xi)/f ′(xi), where f ′(x) is the derivative of f(x). For this
exercise, apply Newton iteration to the function f(x) = x−1 − b.

Exercise 3.36. Using the result of the previous exercise, given positive
integers a and b of bit length at most `, show how to compute ba/bc and
a mod b in time O(M(`)). From this, we see that up to a constant factor,
division with remainder is no harder that multiplication.

Exercise 3.37. Using the result of the previous exercise, give an algorithm
for Exercise 3.23 that runs in time O(M(len(n)) len(k)). Hint: divide and
conquer.

Exercise 3.38. Give an algorithm for Exercise 3.24 that runs in time
O(M(len(n))). Hint: Newton iteration.

Exercise 3.39. Give algorithms for Exercise 3.25 that run in time
O(M(`) len(`)), where ` := len(n). Hint: divide and conquer.

Exercise 3.40. Suppose we have an algorithm that computes the square of
an `-bit integer in time S(`), where S is a well-behaved complexity function.
Show how to use this algorithm to compute the product of two arbitrary
integers of at most ` bits in time O(S(`)).

3.6 Notes

Shamir [84] shows how to factor an integer in polynomial time on a RAM,
but where the numbers stored in the memory cells may have exponentially
many bits. As there is no known polynomial-time factoring algorithm on
any realistic machine, Shamir’s algorithm demonstrates the importance of
restricting the sizes of numbers stored in the memory cells of our RAMs to
keep our formal model realistic.

The most practical implementations of algorithms for arithmetic on large

3.6 Notes 53

integers are written in low-level “assembly language,” specific to a partic-
ular machine’s architecture (e.g., the GNU Multi-Precision library GMP,
available at www.swox.com/gmp). Besides the general fact that such hand-
crafted code is more efficient than that produced by a compiler, there is
another, more important reason for using such code. A typical 32-bit ma-
chine often comes with instructions that allow one to compute the 64-bit
product of two 32-bit integers, and similarly, instructions to divide a 64-bit
integer by a 32-bit integer (obtaining both the quotient and remainder).
However, high-level programming languages do not (as a rule) provide any
access to these low-level instructions. Indeed, we suggested in §3.3 using a
value for the base B of about half the word-size of the machine, so as to
avoid overflow. However, if one codes in assembly language, one can take B
to be much closer to, or even equal to, the word-size of the machine. Since
our basic algorithms for multiplication and division run in time quadratic
in the number of base-B digits, the effect of doubling the bit-length of B is
to decrease the running time of these algorithms by a factor of four. This
effect, combined with the improvements one might typically expect from us-
ing assembly-language code, can easily lead to a five- to ten-fold decrease in
the running time, compared to an implementation in a high-level language.
This is, of course, a significant improvement for those interested in serious
“number crunching.”

The “classical,” quadratic-time algorithms presented here for integer mul-
tiplication and division are by no means the best possible: there are algo-
rithms that are asymptotically faster. We saw this in the algorithm in
Exercise 3.32, which was originally invented by Karatsuba [52] (although
Karatsuba is one of two authors on this paper, the paper gives exclusive
credit for this particular result to Karatsuba). That algorithm allows us to
multiply two `-bit integers in time O(`log2 3). The fastest known algorithm
for multiplying two `-bit integers on a RAM runs in time O(`). This algo-
rithm is due to Schönhage, and actually works on a very restricted type of
RAM called a “pointer machine” (see Problem 12, Section 4.3.3 of Knuth
[54]). See Exercise 18.27 later in this text for a much simpler (but heuristic)
O(`) multiplication algorithm.

Another model of computation is that of Boolean circuits. In this model
of computation, one considers families of Boolean circuits (with, say, the
usual “and,” “or,” and “not” gates) that compute a particular function—
for every input length, there is a different circuit in the family that computes
the function on inputs of that length. One natural notion of complexity for
such circuit families is the size of the circuit (i.e., the number of gates and

http://www.swox.com/gmp

54 Computing with large integers

wires in the circuit), which is measured as a function of the input length.
The smallest known Boolean circuit that multiplies two `-bit numbers has
size O(` len(`) len(len(`))). This result is due to Schönhage and Strassen [82].

It is hard to say which model of computation, the RAM or circuits, is
“better.” On the one hand, the RAM very naturally models computers as
we know them today: one stores small numbers, like array indices, coun-
ters, and pointers, in individual words of the machine, and processing such
a number typically takes a single “machine cycle.” On the other hand, the
RAM model, as we formally defined it, invites a certain kind of “cheating,”
as it allows one to stuff O(len(`))-bit integers into memory cells. For exam-
ple, even with the simple, quadratic-time algorithms for integer arithmetic
discussed in §3.3, we can choose the base B to have len(`) bits, in which
case these algorithms would run in time O((`/ len(`))2). However, just to
keep things simple, we have chosen to view B as a constant (from a formal,
asymptotic point of view).

In the remainder of this text, unless otherwise specified, we shall always
use the classical O(`2) bounds for integer multiplication and division, which
have the advantage of being both simple and reasonably reliable predictors of
actual performance for small to moderately sized inputs. For relatively large
numbers, experience shows that the classical algorithms are definitely not
the best—Karatsuba’s multiplication algorithm, and related algorithms for
division, start to perform significantly better than the classical algorithms
on inputs of a thousand bits or so (the exact crossover depends on myriad
implementation details). The even “faster” algorithms discussed above are
typically not interesting unless the numbers involved are truly huge, of bit
length around 105–106. Thus, the reader should bear in mind that for serious
computations involving very large numbers, the faster algorithms are very
important, even though this text does not discuss them at great length.

For a good survey of asymptotically fast algorithms for integer arithmetic,
see Chapter 9 of Crandall and Pomerance [30], as well as Chapter 4 of Knuth
[54].

